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Personalized Autonomous Driving
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1o bridge the gap between personalized autonomous driving and E2ZEAD, we
introduce the first dataset and benchmark tailored for personalized E2EAD.
Contributionl: A novel large-scale real-world dataset (30k Clips) for
personalized E2ZEAD, annotated with driving style preferences across diverse
traffic scenarios.
Contribution2: A multi-stage annotation pipeline combining rule-based
analysis, visual language model (VLM) reasoning, and human-in-the-loop o
verification to ensure consistent and interpretable style labels.
Contribution3: The first benchmark for personalized E2EAD, enabling o
standardized and quantitative comparison of style-conditioned driving behavior
across different model architectures.
Contribution4: Comprehensive empirical results showing that style-aware
models better align with human behavior, demonstrating the value of

v TTC ranges adjusted for risk tolerance

Benchmark Methods

We adapt 4 classic E2EAD architectures with driving style as condition input:
 AD-MLP-Style: Classic MLP; Concatenates the driving-style vector with ego
features and uses an MLP to output style-conditioned trajectories.
* TransFuser-Style: /mage + LiDAR fusion model; Injects the style encoding into
the multimodal fusion network to enable style-controlled planning.
DiffusionDrive-Style: Diffusion-based planner; Integrating style signals through
a two-stage refinement process to generate more personalized trajectories.
WoTE-Style: BEV world model prediction model; Incorporates driving-style
conditions into the BEV world modeling to modulate trajectory offsets.
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Merge into a Side Road Interior Road Intersection Turn-left
Visualization of Driving Style Distribution in 3 Typical Scenarios. Each case 1s

drawn from similar local scenes without pedestrians or leading cars, ensuring style
differences arise primarily from drivers’ own behavioral preferences. Red
trajectories denote aggressive and blue ones denote conservative.

conditions across 1dentical scenarios. Top Row: Aggressive vs. Normal; Down Row:
Conservative vs. Normal. Red Traj: the model’s predicted trajectory under the given
style condition; Green Traj: the ground-truth human trajectory. Clear behavioral
differences emerge with style variation, reflecting the model s ability to adapt its
outputs to driving preferences.
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Given similar initial conditions for an interior-road scenario, after 7 seconds, the aggressive driver (left)
exhibits higher speed and covers the greatest progress, ignoring potential sudden pedestrian emergence or
vehicle merging in, the normal driver (center) progresses moderately, and the conservative one (right) moves
slowly and cautiously in this complex scenario.

Scenario Distribution and
Style Distribution of
StyleDrive Dataset

1. Dataset: Coarse-to-Fine Style Labeling;
2. Model: Joint Modeling of Scene & Style Preferences;
3. Real-world Application: Inferring Driving Styles from User Profiles.

More Visualization of Different Driving Styles
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Human-in-the-Loop Simulation
Autonomous Driving
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